技巧
-
大数据时代 是什么让你的数据准备跑偏了?
2017-03-06数据准备过程可能是企业从高级分析技术获得商业利益的绊脚石。随着大数据环境的不断发展,集成和准备分析数据的工作正在发生显著的变化。
-
没有好数据 再先进的预测分析工具也爱莫能助
2017-03-02虽然对预测分析工具的价值进行了宣扬,但对它们的过度依赖同样也是有害的,分析工具的洞察力是否足够好,与提供给它们的数据好坏息息相关。
-
相比预测分析和描述性分析 规范模型亮点在哪儿?
2017-03-01规范性模型不只是给参与决策过程的人提供信息,它本身就属于决策过程。它能够阐明最好的结果,对于那些不愿意将决策行为交给机器的人来说,这样的结果将更具有说服力。
-
流数据分析带来的“速度与激情”
2017-02-28和构建大数据架构类似,支撑实时分析架构的软件种类繁多,这对于用户来说有利有弊。找到合适的技术,并把这些技术整合成一个有效的分析框架将是一个十分冒险的过程,一着不慎,满盘皆输。
-
预测分析工具VS情感驱动 谁能左右分析结果?
2017-02-27使用预测分析工具的企业用户有个普遍的共识,那就是数据始终驱动业务决策。 但在政治领域,这种说法并不是那么适用。
-
SAP解决方案管理器工具如何启用完整的测试场景?
2017-02-22在SAP HANA上为Business Suite选择SAP解决方案管理器工具时,成本,易用性,用户熟悉程度和报告需求是公司选择的决定性因素。
-
如何选择SAP库存优化软件?
2017-02-21选择库存优化软件可能很复杂,库存优化仓与MRP监控器结合使用以评估关键性能指标。本文列举了它提供的五个关键功能。
-
五大最佳方式管理SAP SuccessFactors
2017-02-20由于SuccessFactors的技能在市场上很少,特别是对于希望聘用全职系统管理员的公司,可能很难装配SuccessFactors为组织提供支持。
-
数据货币化:夯实前期基础很重要
2017-02-19并非所有的公司都有实现数据货币化的必要性。但对于适合的组织,实施数据货币化战略几乎可以将数据转化为更大的价值。
-
AI工具盛行 是炒作还是大有可为?
2017-02-15在Gartner关于2016年新兴技术的报告中,认知系统和机器学习被认为是热门技术。这导致一些评论家猜测,炒作正在迅速超过AI技术本身提供的能力。
分析 >更多
-
企业商业智能的10大好处
商业智能(BI)软件的起源可以追溯到20世纪60年代基于大型机的决策支持系统,随后BI技术在不断发展,以应对数 […]
-
生成式AI会取代数据分析师吗
生成式AI不会取代数据分析师的工作。在很多领域,人工智能都无法取代人类,特别是那些需要人类同理心和洞察力的领域 […]
-
数据分析中的9种偏见以及如何避免
偏见会通过多种方式出现在分析中,从如何假设和探索问题到如何采样和整理数据。对于任何处理数据的人来说,解决偏见应 […]
-
数据即产品:提供分析使用率的方法
企业正在寻求新方法以让更多员工开始使用分析工具,其中数据即产品的方法开始快速兴起。 研究表明,企业内使用数据的 […]
电子杂志 >更多
-
《数据价值》2017年9月刊·HR也搭上AI这班“顺风车”
人工智能应用程序为一系列业务流程提供了宝贵的洞察力和帮助,而今天的应用只是冰山一角。而且AI不是人的替代品,AI将补充人类的工作或接管不需要复杂决策技能的重复性任务。
-
《数据价值》2017年3月刊·当预测模型失败了
随着大数据环境的不断发展,集成和准备分析数据的工作正在发生显著的变化。