大数据预测分析(Big Data Predictive Analytics)可谓是大数据的圣杯,也是众多数据分析人士的终极梦想。谁不想帮助企业做出英明的业务决策、卖出更多商品和服务、让客户更开心同时避免灾难的发生呢?但是预测分析同时也是一个极端困难的任务,实施成功的预测分析有赖于以下四大关键因素:
一、数据质量。数据是预测分析的血液。数据通常来自内部数据如客户交易数据和生产数据。但我们还需要补充外部数据源,如行业市场数据、社交网络数据和其他统计数据。与流行的技术观点不同,这些外部数据未必一定是“大数据”。数据中的变量是否有助于有效预测才是关键所在。总之,你手里的数据越多,相关度和质量越高,你找出原因和结果的可能性越大。
二、数据科学家。数据科学家必须理解业务需求和业务目标,审视数据,并围绕业务目标建立预测分析规则,例如如何增加电子商务的销售额、保持生产线的正常运转、防止库存短缺等。数据科学家需要拥有数学、统计学等多个领域的知识。看看2008年Netflix大奖(点击查看获奖算法)得主——Formulas Galore(2006年开始,在线电影租赁公司Netflix用百万美元悬赏,奖励能够将其电影推荐算法准确性提高至少10%的人。),那才是真正的科学。幸运的是,大多数预测分析解决方案要求没有这么高。
三、预测分析软件。数据科学家必须借助预测分析软件来评估他们的分析模型和规则,预测分析软件通过整合统计分析和机器学习算法发挥作用。IBM SPSS和SAS是两个数据科学家常用的分析软件。R项目则是一个非常流行的开源工具。如果数据量大到“大数据”的程度,那么你可能还需要一些专门的大数据处理平台如Hadoop或数据库分析机如Oracle Exadata。
四、运营软件。如果你很幸运找到了合适的预测规则,下一步就是将规则植入你的应用。你的预测分析软件应该能以某种方式产生代码,例如预测分析厂商KXEN的产品。更重要的是将预测规则需要的数据事先准备好。预测规则也能通过业务规则管理系统和复杂事件处理平台(CEP)进行优化。
我们一直都在努力坚持原创.......请不要一声不吭,就悄悄拿走。
我原创,你原创,我们的内容世界才会更加精彩!
【所有原创内容版权均属TechTarget,欢迎大家转发分享。但未经授权,严禁任何媒体(平面媒体、网络媒体、自媒体等)以及微信公众号复制、转载、摘编或以其他方式进行使用。】
微信公众号
TechTarget
官方微博
TechTarget中国
作者
相关推荐
-
Tableau-VoiceBase交易为用户提供语音分析数据
现在Tableau用户可以使用并可视化高级语音分析数据,这是Tableau公司与AI语音分析供应商VoiceB […]
-
Cloudera-Hortonworks合并或将减少Hadoop用户的选择
近日大数据领域两家顶级供应商达成交易协议,这可能会影响Hadoop和其他开源数据处理框架,并使大数据用户的技术 […]
-
采矿设备制造商利用BI on Hadoop来挖掘数据
如果大数据要取得巨大成功,则需要提供给更多的最终用户群组。但广泛使用的商业智能工具尚不能轻松分析最大的大数据, […]
-
BI的未来一片光明
很多人都对商业智能(BI)的未来感到好奇,但在商业智能会议上,专家们明确表示无法预测商业智能的未来。 我们大多 […]