星形架构(Star Schema)和雪花架构(Snowflake Schema)是数据仓库中常用到的两种方式,而它们之间的对比要从四个角度来进行讨论。 1.数据优化 雪花模型使用的是规范化数据,也就是说数据在数据库内部是组织好的,以便消除冗余,因此它能够有效地减少数据量。通过引用完整性,其业务层级和维度都将存储在数据模型之中 图1 雪花模型(点击放大) 相比较而言,星形模型实用的是反规范化数据。在星形模型中,维度直接指的是事实表,业务层级不会通过维度之间的参照完整性来部署。
图2 星形模型(点击放大) 2.业务模型 主键是一个单独的唯一键(数据属性),为特殊数据所选择。在上……
我们一直都在努力坚持原创.......请不要一声不吭,就悄悄拿走。
我原创,你原创,我们的内容世界才会更加精彩!
【所有原创内容版权均属TechTarget,欢迎大家转发分享。但未经授权,严禁任何媒体(平面媒体、网络媒体、自媒体等)以及微信公众号复制、转载、摘编或以其他方式进行使用。】
微信公众号
TechTarget
官方微博
TechTarget中国
星形架构(Star Schema)和雪花架构(Snowflake Schema)是数据仓库中常用到的两种方式,而它们之间的对比要从四个角度来进行讨论。
1.数据优化
雪花模型使用的是规范化数据,也就是说数据在数据库内部是组织好的,以便消除冗余,因此它能够有效地减少数据量。通过引用完整性,其业务层级和维度都将存储在数据模型之中
图1 雪花模型(点击放大)
相比较而言,星形模型实用的是反规范化数据。在星形模型中,维度直接指的是事实表,业务层级不会通过维度之间的参照完整性来部署。
图2 星形模型(点击放大)
2.业务模型
主键是一个单独的唯一键(数据属性),为特殊数据所选择。在上面的例子中,Advertiser_ID就将是一个主键。外键(参考属性)仅仅是一个表中的字段,用来匹配其他维度表中的主键。在我们所引用的例子中,Advertiser_ID将是Account_dimension的一个外键。
在雪花模型中,数据模型的业务层级是由一个不同维度表主键-外键的关系来代表的。而在星形模型中,所有必要的维度表在事实表中都只拥有外键。
3.性能
第三个区别在于性能的不同。雪花模型在维度表、事实表之间的连接很多,因此性能方面会比较低。举个例子,如果你想要知道Advertiser 的详细信息,雪花模型就会请求许多信息,比如Advertiser Name、ID以及那些广告主和客户表的地址需要连接起来,然后再与事实表连接。
而星形模型的连接就少的多,在这个模型中,如果你需要上述信息,你只要将Advertiser的维度表和事实表连接即可。
4.ETL
雪花模型加载数据集市,因此ETL操作在设计上更加复杂,而且由于附属模型的限制,不能并行化。
星形模型加载维度表,不需要再维度之间添加附属模型,因此ETL就相对简单,而且可以实现高度的并行化。
总结
雪花模型使得维度分析更加容易,比如“针对特定的广告主,有哪些客户或者公司是在线的?”星形模型用来做指标分析更适合,比如“给定的一个客户他们的收入是多少?”
翻译
相关推荐
-
年度数据仓库市场格局新鲜出炉 论技术论实力谁更受青睐?
国际数据管理分析机构The Information Difference在最新年度数据仓库市场格局(Big Data Warehouse Landscape)报告中,对全球前25家数据仓库厂商进行了评估。
-
体育机构合理选择数据仓库 上演“球迷也疯狂”
体育运动机构如何能更准确地熟悉球迷群体呢?NBA的夏洛特黄蜂队提出了这个问题,并在Phizzle FanTracker平台中获得了答案。
-
选择合适的ETL工具 关键看什么?
传统ETL工具仍然在数据集成市场占最大比例,Gartner公司在2016年数据集成工具魔法象限调研报告中发现,使用批处理任务处理大量数据集成的组织超过80%。
-
Hadoop工具让数据仓库迁移更轻松
即便进入Hadoop时代已经有些年头了,但将任务迁移至分布式平台并非易事。能够找出哪些任务在不给大量开发人员带来麻烦的情况下进行迁移,有助于数据管理人员做出最佳选择。