在Hadoop集群上部署Spark处理引擎,每天处理14TB的交易数据,这就是在线广告平台Altitude Digital最近的实践,它主要追踪用户的社交媒体数据。
AltitudeDigital首席技术官Manny Puentes透露,Spark部署会在今年四月中旬上线,公司为了成功在Hadoop系统中应用Spark Streaming模型,特地将计算节点从30扩展到50。
目前,Altitude Digital使用的是Hive数据仓库软件,这是Apache另一个开源技术,用于查询存储在集群中的数据,基于MapR Hadoop发行版。Puentes表示:“Hive是长时间运行的报表,一旦崩溃,要返回TB级别数据就得花费几个小时的时间。”在测试中,Spark Streaming查询速度是Hive的4到20倍,处理的数据集的规模和复杂度会对查询速度产生影响。
查询速度的提高对公司来讲意义重大,因为公司的分析应用程序,比如通过视频广告浏览数据优化广告位置,经常需要运行查询、等待结果、根据结果优化查询,然后再次运行。如果实践中能获得测试的性能,分析团队可能在一天之内得到复杂查询的答案,不需要再花上四五天的时间了。Puentes介绍到:“这对我们的业务来讲是很有意义的。”
流数据的多种应用方式
AltitudeDigital正在尝试集成来自多种不同的数据源的数据流,通过一定的算法,基于浏览cookie了解用户的行为。公司的另一个目标是给线上广告商更快的仪表盘访问。Puentes表示:“我们也希望能够实时反馈数据洞察力给广告商。”
Spark还只是Altitude Digital应用的技术之一,公司每天通过Spark Streaming处理交易数据的同时,也在使用Concurrent提供的开源Cascading软件来运行MapReduce批处理任务。Spark也支持批处理,而且生成处理速度是MapReduce的一百倍。但Puentes表示,他还是希望使用MapReduce容错技术确保任务完成。
Sharethrough是另一个采用了Spark Streaming的在线广告公司,它用来支持运行在AWS上的基于Cloudera的Hadoop集群。Sharethrough在2013年中期开始使用Databricks公司的Spark云部署,目前通过流处理模块每天运行500GB的互联网点击和广告可视数据。
Spark系统搭载机器学习应用程序,分析原生广告的效果。Sharethrough系统集成副总裁Rob Slifka表示,Hadoop集群部署两年以后,很明显,批导向的系统不能满足企业实时分析的需求。广告商和发行商不得不使用几小时以前的数据决定在哪里做广告,这就给广告优化带来了挑战。Slifka表示,因为Sharethrough平台支持的广告的本质决定的,这样做会很复杂。头条和触屏文本可以形成不同的组合。
数据流和点击率
这种头条-文本的方式更有效。在一次Sharethrough;进行的测试中,内部广告点击率从不足1%增长到7%,这在广告界是很大的进步。之所以采用Spark Streaming就是考虑到它能够快速识别那版广告最有效。Slifka表示:“如果你有十种组合,其中五种都不好,你一定想要快速地了解到哪五种不好。”
多亏了数据流技术,公司才能够用不同的网站用户测试不同的广告,然后快速分析结果,识别哪个广告最有效。Slifka表示:“我们从来不会选择一个单独的赢家,通过Spark Streaming,我们会采用一对组合,使其成为最好的广告。”
Russell Cardullo领导了Spark技术部署,他表示,流处理让性能检测更重要,也更有挑战性。“你需要认识到,这是要7*24小时不间断运行的。数据无时无刻不在产生,你需要及时掌握数据情况,而不是等发生问题了再去解决。”
他补充道,公司运行Spark Streaming,到目前只遇到一个处理问题,而且该问题不是由软件本身引发的,而是公司使用的为Spark提供数据的亚马逊Kinesis和RabbitMQ技术引发的。
Gartner分析师Nick Heudecker和McKnight咨询公司总裁William McKnight也指出了企业在融合大数据和流处理技术时面临的其他挑战。包括构建高可用的技术架构以应对数据处理工作负载,同时能够满足公司分析和业务处理的需求,使其能够利用流数据。Heudecker表示:“如果只加速业务流程的5%,其他95%都没有变,那就没有什么意义了。”
我们一直都在努力坚持原创.......请不要一声不吭,就悄悄拿走。
我原创,你原创,我们的内容世界才会更加精彩!
【所有原创内容版权均属TechTarget,欢迎大家转发分享。但未经授权,严禁任何媒体(平面媒体、网络媒体、自媒体等)以及微信公众号复制、转载、摘编或以其他方式进行使用。】
微信公众号
TechTarget
官方微博
TechTarget中国
翻译
相关推荐
-
Databricks通过自动配置选项来简化Spark计算
Databricks为其管理的Spark平台带来了新功能,以及开源Spark,希望能够使计算引擎更广泛地使用。
-
Spark在基因组数据分析应用中大有可为
科学研究人员需要强大的大数据架构来应对挖掘和分析基因组数据的挑战,有人说Apache Spark引擎非常适合这项工作。
-
Spark尚未“成熟” 用户仍需“专业”
虽然Spark的应用对企业而言已经并不陌生,但对于一些企业来说,这项技术可能还是比较“前沿”。
-
Dr. Elephant:Hadoop和Spark的优化“神器”
美国加州软件公司Pepperdata的应用程序分析软件建立在Dr. Elephant开源项目上。主要目的是让更多的Hadoop和Spark应用程序投入生产。